CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2018/2019

# Thermohydraulics Design of Nuclear Devices 3

Code Completion Credits Range Language
17THNJ3 Z,ZK 3 2+1 Czech
Lecturer:
Dušan Kobylka (guarantor)
Tutor:
Dušan Kobylka (guarantor)
Supervisor:
Department of Nuclear Reactors
Synopsis:

With this course, students are introduced into problem of thermohydraulic calculations. Step by step they will learn more about fundamentals chapters of heat transfer. Are discussed all types basic modes of heat transfer (conduction, convection a radiation). The lectures are focused to fields which are necessary for designs of nuclear reactors as well as others devices in nuclear power plants.

Requirements:

THNJ1, THNJ2

Syllabus of lectures:

1. Introduction to heat transfer

Time range: 1 lecture

Basic modes of heat transfer (conduction, convection a radiation) and their short description, examples of application in nuclear devices, conjugate heat transfer, application of conservation of energy principle on checkplots.

10. Conduction

Time range: 5 lectures

Principles of conduction, Fourier law, thermal conductivity (mainly for material used in nuclear reactors, UO2), derivation of Fourier differential equation of heat transfer and their boundary conditions, solving of Fourier differential equation of heat transfer for simple cases of temperature fields and geometries: steady state conduction on wall (plane, cylindrical) without internal heat sources and with internal heat sources in the course of different boundary conditions, 1D conduction in fins and use of fin efficiency, fundamentals of 2D solution of conduction (plane wall, cylindrical wall with boundary condition as function of angle, ...), 1D transient heat transfer.

11. Convection

Time range: 5 lectures

Principles of convection, Newton equation and heat transfer coefficient, theory of similarity and field of its use, important dimensionless numbers and their derivation, determining quantities, single-phase external forced convection: plane wall (laminar, turbulent boundary layer, influence and rise of boundary layer, cross flow around pipe (laminar, turbulent, heat transfer coefficient as function of pipe perimeter), convection on tube bundle; single-phase external natural convection on walls in large space (vertical and horizontal plane walls), single-phase internal forced convection: issue of reference temperatures, inlet area, area of developed flow, laminar, turbulent flow; single-phase internal natural convection; two-phase convection: condensation (theory, film and drop condensation, determination of heat transfer coefficient on pipes and vertical walls), boiling (theory, nucleate boiling, film boiling, boiling crisis of 1st type, boiling crisis of 2nd type, critical heat flux, determination of heat transfer coefficient on pipes and vertical walls).

Time range: 1 lecture

Principles of radiation, definition of quantities (emittance, emissivity, etc) and terms (black body, etc.), fundamental laws (Kirchhoff's law, Planck law, Wien law, Stefan-Boltzman law, etc.), radiation between parallel plates, radiation of general bodies, radiaton of gases.

Syllabus of tutorials:

Selected chapters are demonstrated on simple examples (heat transmission through wall, fins, temperature field in wall with internal heat source and unsymmetrical boundary conditions 3rd and 4th type, external convection (forced and natural), internal convection, boiling, radiation.

Study Objective:

Knowledge: students will get basic knowledge about field of heat transfer, which they can use especially in solving of thermohydraulic of primary circuit and nuclear reactors core. This basic knowledge will allow them to get in detail designs of another devices of the nuclear power plants (for example heat exchangers, steam generators, condensators, etc.) and they will allow them to understand their operational and physical features.

Abilitiesi: Students will be better orientated in the given problematics and they will be able to work on basic simplified designs. Obtained knowledge will use in the following parts of this course (17THNJ4) and all consecutive course, which are focused on thermal and hydraulics problematic or designing of single devices in nuclear power plant. On base of given knowledge students will be able to understand and analyse behavior and control of nuclear power plant as a complex.

Study materials:

Mareš R., Šifner O., Kadrnožka J.: Tables of properties of water and steam somputed from the industrial formulation IAPWS-IF97, VUTIUM , 1999, ISBN 80-214-1316-6

Incropera, F. P., DeWitt D. P.: Introduction to Heat Transfer, John Willey &amp; Sons, New York, 1996, ISBN 0-471-30458-1

Tong, L.S., Weisman, J.: Thermal Analysis of Pressurized Water Reactors, American Nuclear Society, Illinois USA, 1996, ISBN: 0-89448-038-3

Note:
Time-table for winter semester 2018/2019:
Time-table is not available yet
Time-table for summer semester 2018/2019:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2019-06-18
For updated information see http://bilakniha.cvut.cz/en/predmet2893406.html