Solid State Physics
Code  Completion  Credits  Range  Language 

A8B34SST  Z,ZK  4  3P+1C  Czech 
 Lecturer:
 Tutor:
 Supervisor:
 Department of Microelectronics
 Synopsis:

The subject is aimed on solid state physics including some parts of statistical physics. The subject informs about basic properties of materials used in electronics, esp. about semiconductors.
 Requirements:

PHY2, PHY1, MCM,MC1, LAG.
 Syllabus of lectures:

1.Statistical physics basics, Liouville theorem. Gibbs distribution.
2.Thermodynamic potentials: enthalpy, free energy, chemical potential, entropy and probability.
3.Statistical distributions: MaxwellBoltzmann, FermiDirac and BoseEinstein distribution.
4.Solid and condensed mater, their description; crystals. Crystal classification, reciprocal lattice.
5.Dynamical properties of crystal lattice; heat capacity.
6.Lattice defects; point defects, dislocations; surface properties, nanocrystals.
7.Crystal bindings, their character and classification; van der Waals crystals. Ionic and covalent crystals.
8.Band structure of solids. Semiconductors, effective mass, density of states.
9.Semiconductor in thermodynamic equilibrium. Electrons and holes. Fermi level calculation.
10.Transport effects in semiconductors, scattering mechanisms.
11.Electrons and holes in nonequilibrium, generation and recombination of charge carriers.
12.Electric conductivity of dielectrics, dielectric strength, inner and thermal breakdown. Dielectrics polarization in alternating field, complex permittivity and dissipation factor, ferroelectrics, pyroelectrics, piezoelectrics.
13.Metals, Fermi gas of free electrons, Fermi surfaces. Magnetic effects in solids and their origin, dia, para, fero, feri, antifero magnetic solids.
14.Optical properties of solids, luminescence.
 Syllabus of tutorials:
 Study Objective:
 Study materials:

Ch. Kittel: Introduction to Solid State Physics, 8th ed., Wiley 2005
K. F. Brennan: The Physics of Semiconductors, Cambridge University Press 1999
 Note:
 Further information:
 https://moodle.fel.cvut.cz/enrol/index.php?id=2021
 No timetable has been prepared for this course
 The course is a part of the following study plans:

 Open Electronic Systems (compulsory course of the specialization)
 Open Electronic Systems (compulsory course of the specialization)