Fundamentals of Optics

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
12ZAOP Z,ZK 2 2+0 Czech
Ivan Richter (guarantor), Pavel Kwiecien
Ivan Richter (guarantor), Pavel Kwiecien
Department of Physical Electronics

The lecture covers the very basics of optics - electromagnetic theory, linear optical physics and material effects, basics of nonlinear effects, and geometrical optics. The main goal of the lecture is to obtain, on the bachelor level, broad and general information on optics, giving an essential orientation in the field, especially with respect to character of the bachelor work. Particular topics are further elaborated during departmental masters program. The lecture stems from the electrodynamic notion of plane waves in vacuum (including polarization effects), and further from material medium. It explains basics of linear and nonlinear response in material medium and dispersion properties. It next informs on consequences in anisotropic media, it explains processes induced by boundary conditions at interfaces. It also discusses the consequences of statistics on interference processes, explains elements of two-wave interference and their applications in interferometers. Based on the Fresnel diffraction integral, diffraction processes are presented in a graphical form, including fundamentals of grating diffraction. Based on this diffraction principle, basic functioning of holography is clarified. Finally, the lecture unravels the geometrical optics limit. It takes notice on geometrical approach imaging, substitutive schema of a paraxial imaging system, and optical aberrations. It shows fundamentals of imaging in optical instruments.

Syllabus of lectures:

1.Wave equation as the result of Maxwell equation, fundamentals of optical plane wave propagation in vacuum, basic types of waves, paraxial waves (examples: parabolic equation, Gaussian beam). Vacuum admittance, wave energy in vacuum.

2.Optical wave propagation in isotropic media, polarization vector, admittance of medium, effect of medium, absorption and dispersion in homogeneous media, nonlinear properties.

3.Processes on boundaries between two homogeneous media, polarization effects, Brewster angle, total internal reflection.

4.Polarization, description, polarization elements, anisotropic media.

5.Polychromatic wave, interference law, fundamentals of statistics and second-order coherence, measurability of statistical properties.

6.Light interference - two beam interference and optical interferometry.

7.Fresnel integral, near-field and far field diffraction, graphical interpretation.

8.Hologram as a general diffractive element, hologram fabrication, applications of holography.

9.Eiconal equation and basic postulates of geometrical optics.

10.Basic properties of ideal imaging, paraxial imaging, vergency of a refractive surface and system, vergency of two elements.

11.Optical aberrations of realistic optical systems.

12.Basic optical instruments and their properties - magnifying glass, ocular, microscope, telescopes.

Syllabus of tutorials:
Study Objective:

Knowledge: basic background knowledge of optics, both geometrical and wave.

Skills: basic orientation in the field of optics, skills in practical usage and application of basic optical principles.

Study materials:

Compulsory literature:

[1] Electonic texts on the web: http://optics.fjfi.cvut.cz

Supplementary literature:

[2] Saleh B.E.A., Teich M.C.: Fundamentals of Photonics. J.Wiley, New York 1991; český překlad Základy fotoniky, Matfyzpress Praha 1995.

[3] Hecht E., Zajac A.: Optics. Addison Wesley, London 1974.

[4] Havelka B.: Geometrická optika I.,II. CSAV, Praha 1955.

[5] Schroder G.: Technická optika, SNTL, Praha 1981

Time-table for winter semester 2020/2021:
Time-table is not available yet
Time-table for summer semester 2020/2021:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2021-02-27
For updated information see http://bilakniha.cvut.cz/en/predmet1832106.html