Mechanics III.A
Code  Completion  Credits  Range  Language 

E31A107  ZK  4  0P+0C  English 
 Lecturer:
 Tomáš Vampola, Michael Valášek (guarantor), Václav Bauma, Petr Beneš, Ivo Bukovský, Martin Nečas, Zdeněk Neusser, Jan Pelikán, Pavel Steinbauer, Zbyněk Šika, Jan Zavřel
 Tutor:
 Tomáš Vampola, Michael Valášek (guarantor), Václav Bauma, Petr Beneš, Ivo Bukovský, Martin Nečas, Zdeněk Neusser, Jan Pelikán, Pavel Steinbauer, Zbyněk Šika, Jan Zavřel
 Supervisor:
 Department of Mechanics, Biomechanics and Mechatronics
 Synopsis:

Modeling. Dynamics of systems of particles. Dynamics of body. Mass distribution in a body. Inertia tensor. D'Alembert principle. Inertial effects of motion. Balancing of rotating bodies. Free body diagram method. NewtonEuler equations. Dynamics of multibody systems. The principle of virtual work and power in dynamics. Lagrange equations of 2nd type. Reduction method. Vibrations of systems with 1 DOF. Free oscillations. Forced oscillations excited by harmonic force, by general periodic force and rotating unbalanced mass. Kinematic excitation. Forced oscillations of systems with 1 DOF freedom excited by general force  Duhamel integral. Introduction to nonlinear oscillation. Oscillation of systems with two DOFs, torsional oscillation. Bending vibration, determination of critical speed, dynamic absorber. Stability of motion. Hertz theory of impact. Approximate theory of flywheels.
 Requirements:
 Syllabus of lectures:

 Introduction.
 Modeling.
 Dynamics of systems of particles.
 Dynamics of body.
 Mass distribution in a body > Inertia tensor.
 D'Alembert principle.
 Inertial effects of motion.
 Balancing of rotating bodies.
 Free body diagram method.
 NewtonEuler equations.
 Dynamics of multibody systems.
 The principle of virtual work and power in dynamics.
 Lagrange equations of 2nd type.
 Reduction method.
 Vibrations of systems with 1 DOF.
 Free oscillations.
 Forced oscillations excited by harmonic force.
 Forced oscillations of systems with 1 DOF excited by general periodic force and rotating unbalanced mass.
 Kinematic excitation.
 Forced oscillations of systems with 1 DOF freedom excited by general force  Duhamel integral.
 Introduction to nonlinear oscillation.
 Oscillation of systems with two DOFs, torsional oscillation.
 Bending vibration, determination of critical speed, dynamic absorber.
 Stability of motion.
 Hertz theory of impact.
 Approximate theory of flywheels.
 Syllabus of tutorials:

 Introduction.
 Modeling.
 Dynamics of systems of particles.
 Dynamics of body.
 Mass distribution in a body > Inertia tensor.
 D'Alembert principle.
 Inertial effects of motion.
 Balancing of rotating bodies.
 Free body diagram method.
 NewtonEuler equations.
 Dynamics of multibody systems.
 The principle of virtual work and power in dynamics.
 Lagrange equations of 2nd type.
 Reduction method.
 Vibrations of systems with 1 DOF.
 Free oscillations.
 Forced oscillations excited by harmonic force.
 Forced oscillations of systems with 1 DOF excited by general periodic force and rotating unbalanced mass.
 Kinematic excitation.
 Forced oscillations of systems with 1 DOF freedom excited by general force  Duhamel integral.
 Introduction to nonlinear oscillation.
 Oscillation of systems with two DOFs, torsional oscillation.
 Bending vibration, determination of critical speed, dynamic absorber.
 Stability of motion.
 Hertz theory of impact.
 Approximate theory of flywheels.
 Study Objective:
 Study materials:

Beer F.P., Johnson E.R.: Vector Mechanics for Engineers. Statics and Dynamics. McGrawHill, New York 1988.
 Note:
 Timetable for winter semester 2019/2020:
 Timetable is not available yet
 Timetable for summer semester 2019/2020:
 Timetable is not available yet
 The course is a part of the following study plans:

 12 74 79 00 BTZSI 2012 A  prezenční anglicky (compulsory course in the program)