Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2018/2019

Security and Hardware

The course is not on the list Without time-table
Code Completion Credits Range Language
MI-BHW Z,ZK 4 2P+2C Czech
Lecturer:
Tutor:
Supervisor:
Department of Digital Design
Synopsis:

Students gain a basic knowledge in selected topics of cryptography and cruptanalysis. The module focuses particularly on elliptic curve cryptography, and on contemporary attacks on cryptographic systems. Students gain a good overview of the functionality of (hardware) cryptographic accelerators, (pseudo)random number generators, smart cards, and resources for securing of internal functions of computer systems.

Requirements:

Basic fundamentals of cryptography.

Basic fundamentals of digital design.

Knowledge of VHDL or C.

Syllabus of lectures:

1. Brute-Force Attacks

2. Time-Memory Trade-Off Attacks.

3. Side-channel attacks.

4. Elliptic Curve Cryptography.

5. Efficient Implementation of Binary Field and Prime Filed Operations.

6. (Pseudo)random Number Generators.

7. Smart Cards.

Syllabus of tutorials:

1. Implementation of a chosen cipher in a FPGA or a microcontroller.

2. Side channel attack - key retrieval by means of differential power analysis (DPA)

3. Side channel attack - key retrieval by means of differential power analysis (DPA)

4. Elliptic Curve Cryptography (ECC). Point addition over elliptic curve; its implementation in the FPGA or the microcontroller.

5. Diffie-Hellman key exchange over elliptic curve (ECDH); its implementation in the FPGA or the microcontroller.

Study Objective:

The module introduces students into the area of security of computer systems using hardware and provides knowledge needed for analysis and design of computer system security.

Study materials:

1. Menezes, A., Oorschot, P., Vanstone, S. ''Handbook of Applied Cryptography''. CRC Press, 1996. ISBN 0849385237.

2. Paar, C., Pelzl, J. „Understanding Cryptography“. Springer, 2010, ISBN 978-3-642-04100-6

3. Rankl, W., Effing W. ''Smart Card Handbook''. Third Edition, Wiley, ISBN 047085668-8.

4. Ross J. Anderson, ''Security Engineering: A Guide to Building Dependable Distributed Systems'', Second Edition, Wiley, 2008, ISBN 978-0-470-06852-6.

5. John R. Vacca, ''Biometric Technologies and Verification Systems'', Elsevier, 2007, ISBN: 978-0-7506-7967.

6. Ecks, M., ''Smartcard development with JavaCard and the OpenCard Framework: A feasibility study'', VDM Verlag Dr. Müller, 2008, ISBN: 3836499894.

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2019-05-21
For updated information see http://bilakniha.cvut.cz/en/predmet1435706.html