Artificial Intelligence
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
AD3M33UI | Z,ZK | 6 | 14KP+6KC | Czech |
- Lecturer:
- Tutor:
- Supervisor:
- Department of Cybernetics
- Synopsis:
-
The course is aimed at providing theoretically deeper knowledge in the area of Artificial Intelligence in the extent needed to study the branch of study Robotics. It is organized around several topics: pattern recognition and machine learning, theory of multi-agent systems and artificial life. The linkage between the theoretical and practical applications is rather stressed.
- Requirements:
- Syllabus of lectures:
-
1.Classification methods, Bayesian and non-Bayesian tasks
2.Adaboost, SVM classifiers
3.Graphical probabilistic and Markov models in machine learning
4.Theory of learning, problems of consistency, capacity, PAC
5.Learning of classification rules (AQ, CN2)
6.Sequential pattern recognition, Walds algorithm, extraction and synthesis of features, properties
7.Planning, representation of the planning problem, linear and non-linear planning
8.Methods of planning: TOPLAN, POPLAN, SATPLAN, GRAPHPLAN
9.Multi-agent systems: Reactive and deliberative agents, BDI architecture, reflection
10.Collective behavior of agents, distributed decision making, negotiation techniques, CNP, auction and voting techniques
11.Social knowledge, social behavior of agents, met-reasoning, coalition formation, team cooperation
12.Multi-agent planning and scheduling, industrial applications
13.Artificial life, principles, algorithms, applications
14.Applications
- Syllabus of tutorials:
-
1.Introduction, definition of the course project
2.Bayesian and non-Bayesian tasks
3.Adaboost and SVM classifiers demos of tasks
4.Markov models and machine learning I
5.Markov models and machine learning II
6.AQ and CN2 systems, experiments I
7.AQ and CN2 systems, experiments II
8.Planning tasks
9.Planning - practical exercise
10.Aglobe Systems and its features, demo
11.Demos of multi-agent systems (Agentfly, ProPlant, MAST)
12.Agentification of systems, semantic information
13.Artificial life demos
14.Delivery of course project
- Study Objective:
- Study materials:
-
1. Wooldridge, M.: An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002
2. Nilsson N.J. & Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Elsevier Science, 1998
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Elektrotechnika, energetika a management - Technologické systémy_144957 (elective course)
- Elektrotechnika, energetika a management - Elektrické stroje, přístroje a pohony_145019 (elective course)
- Elektrotechnika, energetika a management - Elektroenergetika_145039 (elective course)
- Elektrotechnika, energetika a management - Ekonomika a řízení energetiky_145106 (elective course)
- Elektrotechnika, energetika a management - Ekonomika a řízení elektrotechniky_145126 (elective course)
- Komunikace, multimédia a elektronika - Bezdrátové komunikace_145152 (elective course)
- Komunikace, multimédia a elektronika - Multimediální technika_145209 (elective course)
- Komunikace, multimédia a elektronika - Elektronika_145231 (elective course)
- Komunikace, multimédia a elektronika - Sítě elektronických komunikací_145248 (elective course)
- Kybernetika a robotika - Robotika_145304 (compulsory course of the specialization)
- Otevřená informatika - Umělá inteligence_145417 (elective course)
- Otevřená informatika - Počítačové inženýrství_145440 (elective course)
- Otevřená informatika - Počítačové vidění a digitální obraz_145456 (elective course)
- Otevřená informatika - Počítačová grafika a interakce_145515 (elective course)
- Otevřená informatika - Softwarové inženýrství_145534 (elective course)
- Komunikace, multimédia a elektronika - Komunikační systémy (elective course)