Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2019/2020

Semiconductor Physics 1

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
11POL1 ZK 6 4 Czech
Lecturer:
Zdeněk Potůček (guarantor)
Tutor:
Zdeněk Potůček (guarantor)
Supervisor:
Department of Solid State Engineering
Synopsis:

Lectures give overview of fundamental physical phenomena used for design and operation of semiconductor elements. Physics of electric, galvanomagnetic, thermoelectric, thermomagnetic, photoelectric and optical properties of intrinsic and doped semiconductors is explained in detail with respect to possibilities of their effective modification and optimization. Considerable attention is also paid to explanation of the properties of P-N junction and metal-semiconductor contact.

Requirements:

Basic knowledge of structure and theory of solid state.

Syllabus of lectures:

1. Elementary properties and types of semiconductors.

2. Energy band structure of semiconductors, positively charged holes, effective mass.

3. Statistics of charge carriers in thermodynamic equilibrium, Fermi-Dirac distribution function, occupation probability of impurity energy levels, intrinsic, doped, compensated and degenerate semiconductor.

4. Charge and energy transport in non-degenerate semiconductors, Boltzmann transport equation, relaxation time, conductivity, Hall effect, magnetoresistance.

5. Scattering processes in semiconductors, scattering on acoustic phonons and ionized impurities, temperature dependence of lifetime and mobility of charge carriers.

6. Diffusion of charge carriers, non-homogenous systems, Einstein relations.

7. Thermoelectric effect, Peltier effect, thermomagnetic effects.

8. Injection and recombination of free charge carriers, ambipolar mobility, diffusion length of minority charge carriers.

9. Optical absorption of semiconductors, exciton and impurity absorption.

10. Deep impurity levels, electron and hole traps, recombination centers.

11. Photoelectric properties of semiconductors, mechanisms and dynamic of photoconductivity, photovoltaic effects, light generation in semiconductors - electroluminescence.

12. Abrupt P-N junction in thermodynamic equilibrium, volt-ampere characteristics and capacity of P-N junction, graded P-N junction.

13. Metal-semiconductor contact, Schottky diode, volt-ampere characteristics of Schottky diode, ohmic contact.

Syllabus of tutorials:
Study Objective:

Knowledge:

Physics of electric, galvanomagnetic, thermoelectric, thermomagnetic, photoelectric, and optical properties of intrinsic and doped semiconductors, P-N junction, and metal-semiconductor contact.

Skills:

Description of the semiconductor by appropriate physical model allowing predict its behavior under given conditions and effectively modify its properties.

Study materials:

Key reference:

[1] B. Sapoval, C. Hermann: Physics of semiconductors, 2003, Springer - Verlag, Berlin.

Recommended reference:

[2] K. Seeger: Semiconductor Physics, 1973, Springer - Verlag, Wien.

Note:
Time-table for winter semester 2019/2020:
Time-table is not available yet
Time-table for summer semester 2019/2020:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2020-01-26
For updated information see http://bilakniha.cvut.cz/en/predmet11290105.html