Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Experimental Neutron Physics

The course is not on the list Without time-table
Code Completion Credits Range
17EXNF KZ 3 2+1
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Nuclear Reactors
Synopsis:

The lectures are mainly focused on detailed characterisation of neutron properties, characteristics of neutron (reactor and non reactor) sources, properties of prompt and delayed neutrons, neutron detection methods, neutron induced nuclear reactions, modification and adjustment of neutron field, science and industry neutron applications. Last lecture deals with experimental data processing and analysis.

The lectures are supplemented with experimental practices in the field of neutron detection, determination of delayed neutron properties, study of neutron diffusion in various materials, preparation and characterisation of photo-neutron source and neutron source calibration.

Experimental practices will be running at training reactor VR-1 and in the neutron laboratory.

Requirements:

17ZAF

Syllabus of lectures:

1. Discovery of the neutron and its properties

Range: 1 lecture,

Topic of lecture: Discovery of the neutron and history of experimental neutron physics, the properties of the neutron and their experimental research (neutron mass, neutron lifetime and decay, neutron energy and wavelength, neutron charge, neutron spin and magnetic moment)

2. Neutron sources and their properties

Range: 1 lecture

Topic of lecture: Reactor and non reactor neutron sources. Types and characterisation of nuclear research reactors as a neutron source. Characterisation and properties (intensity and energy range) of non reactor neutron sources. Overview and description of radionuclide sources. Radionuclide sources calibration. Neutron generators. System of accelerator an target as a neutron source.

3. Prompt and delayed neutrons

Range: 1 lecture

Topic of lecture: Origin of prompt neutrons and their properties. Origin and importance of delayed neutrons. The properties of delayed neutrons. Experimental determination of delayed neutron properties. Delayed neutrons and its utilisation in experiments and research.

4. Neutron detection

Range: 1 lecture

Topic of lecture: General principles in particle detection. Possibilities and methods of neutron detection. Proton-recoil methods. Methods based on neutron-nuclear reactions. Overview and properties of neutron detectors (ionisation chamber, semiconductor detectors, scintillation detectors, thermoluminescent detectors). Neutron spectrometry.

5. Neutron-nuclear interactions

Range: 1 lecture

Topic of lecture: Overview and characterisation of neutron interactions with matter. Forces between neutrons and particles. Neutron-nuclear interactions. Neutron cross-sections. Elastic and inelastic scattering. Radiative capture. Fission. Neutron-nuclear interaction attended by nucleon emission.

6. Neutron fields adjustment

Range: 1 lecture

Topic of lecture: Modification of neutron spectra. Cold and ultra cold neutron sources. Modification of neutron beam profile and direction. Neutron collimators. Neutron channels and utilisation of neutron beams in experimental neutron physics.

7. Application and utilisation of neutrons

Range: 1 lecture

Topic of lecture: Overview of neutron applications in the field of industry, medicine, chemistry, biology, geology and archaeology. Representative experimental and industry application of neutrons. Neutron diffraction. Neutron radiography. Neutron activation analyses. Transmutation - silicon doping. Radioisotopes production for industry and medicine applications. Boron capture therapy.

8. Experimental data processing and analysis

Range: 1 lecture

Topic of lecture: Experimental data processing. Definition and separation of measurement errors and uncertainties. Mean value, variation and standard deviation. Error propagation, determination of errors from direct and indirect measurement values. Analysis, evaluation and presentation of experimental data.

Syllabus of tutorials:

Experimental practices will be running at training reactor VR-1 and in the neutron laboratory.

1. Neutron detection in VR-1 reactor core

Range: 1 practice

Topic of practice: Basic parameters and set up of neutron detection system. Determination of neutron detection system linearity and its nonlinearity correction. Measurement of neutron flux distribution in VR-1 reactor core by small gas filled detectors.

2. Delayed neutrons detection at VR-1 rector

Range: 1 practice

Topic of practice: Parameters of device for delayed neutrons detection at VR-1 rector. Detection of delayed neutrons emitted by irradiated fissionable material and determination of their basic properties. Determination of fissionable material mass using delayed neutron counting method.

3. Study of neutron diffusion

Range: 1 practice

Topic of practice: Study of neutron diffusion in graphite and water. Measurement of neutrons distribution emitted by neutron source in graphite prism and water bath. Determination of neutron diffusion length for graphite and water.

4. Study of photo-neutron source

Range: 1 practice

Topic of practice: Preparation of photo-neutron source at VR-1 reactor. Detection of neutrons produced by reaction of gamma ray with heavy water.

5. Neutron source calibration

Range: 1 practice

Topic of practice: Principle of manganese bath and its utilisation for radionuclide sources calibration. Neutron source (AmBe type) calibration in manganese bath. Determination of neutron source emission by manganese bath.

7. Seminar paper

Range: 1 practice

Topic of practice: Checking and evaluation of student reports from practices, presentation of experimental works and experimental results, discussion.

Study Objective:

Knowledge: detailed knowledge of neutron properties and its interaction, knowledge of experimental methods using neutrons, comprehensive knowledge of industry and science neutron application

Ability: orientation in the given problems, application of gained knowledge in the fields of science, research and other experimental subject matter, ability of preparation and realisation of experimental works, processing of experimental values and its analysis and interpretation

Study materials:

Key references:

Paul Reuss: Neutron Physics, EDP Sciences, 2008, France, ISBN: 978-2-7598-0041-4

Liyuan Liang, Romano Rinaldi, Helmut Schober: Neutron Applications in Earth, Energy and Envirinmental Sciences, Springer Science+Business Media, LLC 2009, ISBN 978-0-387-09415-1

Recommended references:

Tatjana Jevremovic: Nuclear Principles in Engineering, Springer Science+Business Media, LLC 2009, ISBN 978-0-387-85607-0

International Atomic Energy Agency: The applications of research reactors, IAEA-TECDOC-1234, Vienna, 2001

Media and tools:

training reactor VR-1 and neutron laboratory at Department o nuclear reactors

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-03-27
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet11282205.html