Kvantová korekce chyb
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
QNIE-QEC | Z,ZK | 5 | 2P+2C | anglicky |
- Garant předmětu:
- Aurél Gábor Gábris
- Přednášející:
- Aurél Gábor Gábris
- Cvičící:
- Aurél Gábor Gábris
- Předmět zajišťuje:
- katedra aplikované matematiky
- Anotace:
-
In this course, we will build a theory for the construction of quantum error-correcting codes. In the introductory part, necessary chapters from the classical theory will be summarized, atop of which we then present the quantum analogy. We will show how coherently stored quantum information can be made robust to loss and noise. We conclude the course by arriving at the principle of fault tolerance, based on which quantum computers are able to continuously correct errors arising at runtime and thus achieve correct results even with erroneous bits, gates or measurements.
- Požadavky:
- Osnova přednášek:
-
1.Block codes, code density (transmission rate), linear codes, Hamming codes, syndrome decoding.
2. Singleton bound, Hamming (sphere-packing) bound, Gilbert-Varshamov bound, dual codes.
3. LDPC codes, expander codes.
4. Specifics of quantum information storage and processing: state space, unitary operations, measurement, no-cloning theorem. Quantum gates and universal subsets. Pauli group.
5. Pure and mixed states, decoherence channels. Errors in information transfer, storage, computation. Model of mutually independent, rotationally symmetric single-bit errors. Error correction conditions. Linearity.
6. Stabilizer codes, concept of physical, logical qubits and code distance. Repetition code as an example of a stabilizer code. Concatenation and Shor's [[9,1,3]] code. Non-destructive syndrome measurement.
7. CSS construction, Steane's [[7,1,3]] code.
8. Quantum versions of code distance bounds. Degenerate quantum codes. [[5,1,3]] cyclic code, [[4,2,2]] erasure code, other prominent examples.
9. Clifford group. Stabilizer transformations during operations. Encoders and decoders of stabilizer codes.
10. Operations on one or more logical qubits. Principle of fault tolerance of quantum computations.
11. Gottesman-Knill theorem. Universal quantum computation on encoded qubits. Threshold theorem for universal error-tolerant quantum computation.
12. Important quantum code families. Toric code and other topological constructions. Fault-tolerant computation without concatenation.
13. research directions of quantum error-correcting codes.
- Osnova cvičení:
-
1.Block codes, code density (transmission rate), linear codes, Hamming codes, syndrome decoding.
2. Singleton bound, Hamming (sphere-packing) bound, Gilbert-Varshamov bound, dual codes.
3. LDPC codes, expander codes.
4. Specifics of quantum information storage and processing: state space, unitary operations, measurement, no-cloning theorem. Quantum gates and universal subsets. Pauli group.
5. Pure and mixed states, decoherence channels. Errors in information transfer, storage, computation. Model of mutually independent, rotationally symmetric single-bit errors. Error correction conditions. Linearity.
6. Stabilizer codes, concept of physical, logical qubits and code distance. Repetition code as an example of a stabilizer code. Concatenation and Shor's [[9,1,3]] code. Non-destructive syndrome measurement.
7. CSS construction, Steane's [[7,1,3]] code.
8. Quantum versions of code distance bounds. Degenerate quantum codes. [[5,1,3]] cyclic code, [[4,2,2]] erasure code, other prominent examples.
9. Clifford group. Stabilizer transformations during operations. Encoders and decoders of stabilizer codes.
10. Operations on one or more logical qubits. Principle of fault tolerance of quantum computations.
11. Gottesman-Knill theorem. Universal quantum computation on encoded qubits. Threshold theorem for universal error-tolerant quantum computation.
12. Important quantum code families. Toric code and other topological constructions. Fault-tolerant computation without concatenation.
13. research directions of quantum error-correcting codes.
- Cíle studia:
-
In this course, we will build a theory for the construction of quantum error-correcting codes. In the introductory part, necessary chapters from the classical theory will be summarized, atop of which we then present the quantum analogy. We will show how coherently stored quantum information can be made robust to loss and noise. We conclude the course by arriving at the principle of fault tolerance, based on which quantum computers are able to continuously correct errors arising at runtime and thus achieve correct results even with erroneous bits, gates or measurements.
- Studijní materiály:
-
1. Gottesman, D.: Stabilizer Codes and Quantum Error Correction
Ph.D. thesis, California Institute of Technology 1997
https://doi.org/10.48550/arXiv.quant-ph/9705052
2. Ball, S.: A Course in Algebraic Error-Correcting Codes
Springer 2020
ISBN 9783030411527
3. Gaitan, F.: Quantum Error Correction And Fault Tolerant Quantum Computing
CRC Press
- Poznámka:
-
Předmět je vyučován v anglickém jazyce.
- Další informace:
- https://courses.fit.cvut.cz/QNI-QEC
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: