Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2024/2025

Strojové učení 2

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
BI-ML2.21 Z,ZK 5 2P+2C česky
Garant předmětu:
Daniel Vašata
Přednášející:
Daniel Vašata
Cvičící:
Daniel Vašata
Předmět zajišťuje:
katedra aplikované matematiky
Anotace:

Cílem předmětu je seznámit studenty s vybranými pokročilejšími metodami strojového učení. Ve scénáři učení s učitelem se jedná zejména o jádrové metody a neuronové sítě. Ve scénáři učení bez učitele se jedná o analýzu hlavních komponent a další metody redukce dimenzionality. Kromě toho se studenti obeznámí se základy posilovaného učení a strojového zpracování přirozeného jazyka.

Požadavky:

Předpokládá se znalost lineární algebry, matematické analýzy, teorie pravděpodobnosti v rozsahu kurzů vyučovaných na fakultě. Dále se předpokládá znalost strojového učení odpovídající rozsahu kurzu BI-ML1 na fakultě.

Osnova přednášek:

1. Lineární model bázových funkcí, jádrová regrese

2. Metoda podpůrných vektorů (SVM) pro klasifikaci

3. Redukce dimenzionality - analýza hlavních komponent (PCA)

4. Redukce dimenzionality - lineární diskriminační analýza, lokálně lineární vnoření

3. Generativní modely - naivní Bayes

6. Neuronové sítě - perceptron, vícevrstvý perceptron, hluboké učení

7. Neuronové sítě - zpětné šíření chyby, regularizace

8. Neuronové sítě - konvoluční neuronové sítě

9. Neuronové sítě - rekurentní neuronové sítě, moderní metody

10. Posilované učení - úvod, mnohoruký bandita

11. Posilované učení - markovův rozhodovací proces

12. Strojové zpracování přirozeného jazyka

Osnova cvičení:

1. Lineární model bázových funkcí, jádrová regrese

2. Metoda podpůrných vektorů (SVM)

3. Redukce dimenzionality - analýza hlavních komponent (PCA)

4. Redukce dimenzionality - lineární diskriminační analýza, lokálně lineární vnoření

3. Generativní modely - naivní Bayes

6. Neuronové sítě - perceptron, vícevrstvý perceptron

7. Neuronové sítě - hluboké sítě

8. Neuronové sítě - konvoluční neuronové sítě

9. Neuronové sítě - rekurentní neuronové sítě

10. Posilované učení I

11. Posilované učení II

12. Strojové zpracování přirozeného jazyka

Cíle studia:

Cílem předmětu je poskytnout základní úvod do pokročilejších metod velmi rychle se rozvíjejícího oboru strojového učení.

Studijní materiály:

1. Hastie T., Tibshirani R., Friedman, J. : The Elements of Statistical Learning. Springer, 2009. ISBN 978-0-387-84857-0.

2. Goodfellow I., Bengio Y., Courville A. : Deep Learning. MIT Press, 2016. ISBN 978-0-262-03561-3.

3. Sutton R. S., Barto A. G. : Reinforcement Learning. MIT Press, 2018. ISBN 978-0-262-03924-6.

Poznámka:

Informace o předmětu a výukové materiály naleznete na https://courses.fit.cvut.cz/BI-ML2/

Další informace:
https://courses.fit.cvut.cz/BI-ML2/
Rozvrh na zimní semestr 2024/2025:
Rozvrh není připraven
Rozvrh na letní semestr 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
Út
St
místnost TK:BS
Vašata D.
14:30–16:00
(přednášková par. 1)
Dejvice
NTK Ballingův sál
místnost TK:BS
Vašata D.
16:15–17:45
(přednášková par. 1
paralelka 101)

Dejvice
NTK Ballingův sál
Čt

Předmět je součástí následujících studijních plánů:
Platnost dat k 21. 1. 2025
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet6576906.html