Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2018/2019

Eperimental Data Analysis

Předmět není vypsán Nerozvrhuje se
Kód Zakončení Kredity Rozsah Jazyk výuky
BE2M31AEDA Z,ZK 6 2p+2c
Korekvizita:
Safety in Electrical Engineering for a master´s degree (BEEZM)
Přednášející:
Cvičící:
Předmět zajišťuje:
katedra teorie obvodů
Anotace:

V rámci předmětu Analýza experimentálních dat si studenti ověří aplikace základních DSP metod na různých úlohách a rovněž budou aplikovat základní statistické a klasifikační metody pro vyhodnocení a interpretaci dat. V rámci semestrální práce budou studenti zpracovávat a vyhodnocovat reálná data, a na závěr prezentovat výsledky jejich práce. Cílem předmětu je naučit studenty kriticky myslet a získat dovedností při samostatném řešení praktických úkolů.

Požadavky:
Osnova přednášek:

1. Introduction to the subject „Experimental Data Analysis“, introduction to data

2. Introduction to the statistics, probability distributions, and plotting statistical data

3. Hypothesis testing, group differences, paired test, effect size

4. Correlations, normality of data testing, parametric vs. non-parametric tests

5. Analysis of variance, post-hoc testing

6. Type I & Type II errors, multiple comparisons, sample size estimation

7. Factorial analysis of variance

8. Introduction to models, regression analysis

9. Supervised classification

10. Model validation

11. Unsupervised classification

12. Dimensionality reduction, data interpretation

13. Reserve, consultation of semestral projects

14. Presentation of obtained results

Osnova cvičení:

1. Introduction to Matlab

2. Introduction to the statistics, probability distributions, and plotting statistical data

3. Hypothesis testing, group differences, paired test, effect size

4. Correlations, normality of data testing, parametric vs. non-parametric tests

5. Analysis of variance, post-hoc testing

6. Type I & Type II errors, multiple comparisons, sample size estimation

7. Factorial analysis of variance

8. Introduction to models, regression analysis

9. Supervised classification

10. Model validation

11. Unsupervised classification

12. Dimensionality reduction, data interpretation

13. Reserve, consultation of semestral projects

14. Presentation of obtained results

Cíle studia:
Studijní materiály:

[1] Vidakovic B. Statistics for bioengineering sciences: with Matlab and WinBUGS support. New Yourk: Springer, 2011.

[2] Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning : data mining, inference, and prediction: with 200 full-color illustrations. New York: Springer, 2001.

Poznámka:
Další informace:
Pro tento předmět se rozvrh nepřipravuje
Předmět je součástí následujících studijních plánů:
Platnost dat k 20. 5. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet5598706.html