Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2019/2020

Regresní analýza dat

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
01REAN Z,ZK 4 2+2 česky
Přednášející:
Jan Ámos Víšek (gar.)
Cvičící:
Jiří Franc (gar.)
Předmět zajišťuje:
katedra matematiky
Anotace:

Klíčová slova:

Regresní model, průřezová a panelová data, klasické a robustní odhady.

Požadavky:
Osnova přednášek:

Lineární model, nejmenší čtverce, odhad minimalizující součet absolutních hodnot residuí. Nejlepší nestranný lineární odhad regresních koeficientů - podmínka ortogonality a sferikality (homoscedasticita), konsistence. Asymptotická normalita odhadu regresních koeficientů. Nejlepší nestranný odhad regresních koeficientů. Koeficient determinace, role interceptu, signifikance vysvětlujících veličin. Konfidenční intervaly, testování submodelu, Chowův test. Statistické knihovny (menu a key-orientované), možnosti, vstupy a výstupy, spolehlivost, interpretace výsledků. Whitův test na heteroskedasticitu, index plot. Testování normality, Theilova přepočítaná residua, test dobré shody, Kolmogorov-Smirnovův test, normal plot. Kolinearita, index podmíněnosti, Farrar-Glauberův test, redundance, hřebenová regrese, odhad s lineárními omezeními. AR, MA, AR(I)MA, podmínka invertibility a stacionarity. Vyhlazování (lineárního) trendu pomocí křivek, klouzavých průměrů a exponenciál. Sezónní a cyklická složka, testy náhodnosti. Eficientní odhad regresních koeficientů pro AR(1), MA(1), nebo AR(2), MA(2) disturbance (Prais-Winsten, Cochrane-Orcutt). Robustní regrese - M-odhady, kvalitativní a kvantitativní robustnost, influenční funkce, vlivné body (outliers, leverage points). Nejmenší medián čtverců residuí (the least median of squares), minimalizace usekaného součtu čtverců residuí a minimalizace součtu usekaných čtverců residuí (the trimmed least squares and the least trimmed squares), vážené nejmenší čtverce a nejmenší vážené čtverce (the weighted least squares and the least weighted squares), algoritmy, aplikace. Filosofické úvahy o matematickém modelování.

Osnova cvičení:

Cvičení bude probíhat v souladu s přednáškou a jeho součástí bude osvojení si metod regresní analýzy v prostředí R.

Úvod do R, lineární model, odhad pomocí metody nejmenších čtverců, residua, pod-model, ANOVA, testy o splnění předpokladů, Normalita, Nezávislost, QQ plot, multikolinearita, logistická regrese, nelineární regrese, transformace, robustní metody odhadu.

Cíle studia:

Znalosti:

Navázat na statistickou výuku a nabídnout jeden z nejmocnějších nástrojů modelování dat. Seznámit studenty s teoretickým zázemím i praktickým použitím. Otevřít jim pohled statistika a ekonometra, klasický a robustní přístup.

Schopnosti:

Samostatná aplikace regresních metod na empirická data.

Studijní materiály:

Povinná literatura:

[1] Statistická analýza dat. Vydavatelství Českého vysokého učení technického v Praze,1997. (187 stran, ISBN 80-01-01735-4)

Doporučená literatura:

[2] Hardle, W., Applied Nonparametric Regression (1990), ISBN 0-521-42950-1

Poznámka:
Rozvrh na zimní semestr 2019/2020:
Rozvrh není připraven
Rozvrh na letní semestr 2019/2020:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 21. 9. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet5358006.html