Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2019/2020

Statistika a pravděpodobnost

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah
BD5B01STP Z,ZK 6 14KP+6KC
Přednášející:
Kateřina Helisová (gar.)
Cvičící:
Kateřina Helisová (gar.)
Předmět zajišťuje:
katedra matematiky
Anotace:

Cílem předmětu je seznámit studenty se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Požadavky:

Základní metody výpočtu integrálů.

Osnova přednášek:

1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.

2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.

3. Náhodná veličina - definice, distribuční funkce a její užití.

4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.

5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.

6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.

7. Nezávislost náhodných veličin, kovariance a korelace.

8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.

9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.

10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.

11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.

12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.

13. Intervalové odhady parametrů - základní konstrukce, užití k testování hypotéz.

14. Testování hypotéz - obecný princip, t-test, test dobré shody, test nezávislosti v kontingenční tabulce.

Osnova cvičení:

1. Náhodné jevy, pravděpodobnost, pravděpodobnostní prostor - definice a základní typy.

2. Podmíněná pravděpodobnost, Bayesova věta, nezávislost jevů.

3. Náhodná veličina - definice, distribuční funkce a její užití.

4. Základní charakteristiky náhodných veličin - střední hodnota, rozptyl a jiné momenty.

5. Diskrétní náhodná veličina - definice, popis, příklady diskrétních náhodných veličin.

6. Spojitá náhodná veličina - definice, popis, příklady spojitých náhodných veličin.

7. Nezávislost náhodných veličin, kovariance a korelace.

8. Rozdělení součtu nezávislých náhodných veličin, konvoluce.

9. Náhodný vektor - definice, popis, marginální rozdělení, význam ve statistice.

10. Centrální limitní věta - využití pro základní výpočty, význam ve statistice.

11. Základní pojmy ve statistice - náhodný výběr, výběrový průměr, výběrový rozptyl, kvantil, empirická distribuční funkce, histogram, krabicový graf.

12. Bodové odhady parametrů - nestrannost, metoda momentů, metoda maximální věrohodnosti.

13. Intervalové odhady parametrů - základní konstrukce, užití k testování hypotéz.

14. Testování hypotéz - obecný princip, t-test, test dobré shody, test nezávislosti v kontingenční tabulce.

Cíle studia:

Seznámení studentů se základy teorie pravděpodobnosti a matematické statistiky, jejich výpočetními metodami a aplikacemi těchto matematických nástrojů na praktické příklady.

Studijní materiály:

[1] M. Navara: Pravděpodobnost a matematická statistika. ČVUT, Praha 2007.

[2] V. Dupač, M. Hušková: Pravděpodobnost a matematická statistika. Karolinum, Praha 1999.

Poznámka:
Další informace:
http://math.feld.cvut.cz/helisova/01pstAD7B01PST.html
Rozvrh na zimní semestr 2019/2020:
Rozvrh není připraven
Rozvrh na letní semestr 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
Út
St
Čt

místnost T2:A4-203b
Helisová K.
10:00–11:45
SUDÝ TÝDEN

(přednášková par. 1)
Dejvice
Učebna
Předmět je součástí následujících studijních plánů:
Platnost dat k 23. 2. 2020
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet5000306.html