Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2019/2020

Matematická analýza 1

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
BD5B01MA1 Z,ZK 8 28KP+6KC česky
Přednášející:
Miroslav Korbelář, Paola Vivi
Cvičící:
Miroslav Korbelář, Paola Vivi
Předmět zajišťuje:
katedra matematiky
Anotace:

Cílem kurzu je seznámit studenty se základy diferenciálního a integrálního počtu funkce jedné proměnné.

Požadavky:

Informace viz http://math.feld.cvut.cz/vivi/AD0B01MA1.htm.

Osnova přednášek:

1. Reálná čísla. Elementární funkce.

2. Limita a spojitost funkce.

3. Derivace funkce, její vlastnosti a aplikace.

4. Věty o střední hodnotě. L'Hospitalovo pravidlo, Taylorův polynom.

5. Extrémy a průběh funkcí.

6. Primitivní funkce, základní metody výpočtu.

7. Integrace racionálních a dalších typů funkcí.

8. Riemannův integrál. Newtonova-Leibnizova formule.

9. Nevlastní integrál. Aplikace integrálu.

10. Posloupnost a její limita.

11. Číselné řady a kritéria jejich konvergence.

12. Úvod do diferenciálních rovnic.

13. Další témata z matematické analýzy.

Osnova cvičení:

1. Reálná čísla. Elementární funkce.

2. Limita a spojitost funkce.

3. Derivace funkce, její vlastnosti a aplikace.

4. Věty o střední hodnotě. L'Hospitalovo pravidlo, Taylorův polynom.

5. Extrémy a průběh funkcí.

6. Primitivní funkce, základní metody výpočtu.

7. Integrace racionálních a dalších typů funkcí.

8. Riemannův integrál. Newtonova-Leibnizova formule.

9. Nevlastní integrál. Aplikace integrálu.

10. Posloupnost a její limita.

11. Číselné řady a kritéria jejich konvergence.

12. Úvod do diferenciálních rovnic.

13. Další témata z matematické analýzy.

Cíle studia:

Cílem kurzu je seznámit studenty se základy diferenciálního a integrálního počtu funkce jedné proměnné.

Studijní materiály:

[1] J. Tkadlec: Diferenciální a integrální počet funkcí jedné proměnné. ČVUT Praha, 2004, 2011.

[2] L. Průcha: Řady, ČVUT Praha, 2005.

[3] J. Tkadlec: Diferenciální rovnice. Laplaceova transformace. ČVUT Praha, 2005.

Poznámka:
Další informace:
http://math.feld.cvut.cz/vivi/AD0B01MA1.htm
Rozvrh na zimní semestr 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
Út
St
Čt

místnost T2:C4-363
Vivi P.
10:00–13:30
SUDÝ TÝDEN

(přednášková par. 1)
Dejvice
Cvicebna
Rozvrh na letní semestr 2019/2020:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 20. 9. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet4999906.html