Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2018/2019

Three-dimensional Computer Vision

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
BE4M33TDV Z,ZK 6 2p+2c
Korekvizita:
Safety in Electrical Engineering for a master´s degree (BEEZM)
Předmět nesmí být zapsán současně s:
3D počítačové vidění (A4M33TDV)
Trojrozměrné počítačové vidění (B4M33TDV)
Předmět je náhradou za:
Trojrozměrné počítačové vidění (B4M33TDV)
Přednášející:
Radim Šára (gar.)
Cvičící:
Radim Šára (gar.), Martin Matoušek
Předmět zajišťuje:
katedra kybernetiky
Anotace:

This course introduces methods and algorithms for 3D geometric scene reconstruction from images. The student will understand these methods and their essence well enough to be able to build variants of simple systems for reconstruction of 3D objects from a set of images or video, for inserting virtual objects to video-signal source, or for computing ego-motion trajectory from a sequence of images. The labs will be hands-on, the student will be gradually building a small functional 3D scene reconstruction system and using it to compute a virtual 3D model of an object of his/her choice.

Požadavky:

Znalost ekvivalentní předmětům Geometrie počítačového vidění a grafiky a Metody počítačového vidění.

Detailní aktuální informace o běžícím předmětu na http://cw.felk.cvut.cz/doku.php/courses/a4m33tdv/start

Osnova přednášek:

1. 3D computer vision, its goals and applications, course overview.

2. Geometry of points and lines in plane, ideal points and lines, point and line representations, line intersection and point join, homography.

3. Perspective camera model, center of projection, principal point, optical axis, optical ray and optical plane. Vanishing point and vanishing line, cross-ratio of four colinear points and its use for camera calibration. Radial distortion models.

4. Camera resection from six points, external camera orientation from three points.

5. Epipolar geometry, its representation by the fundamental matrix, essential matrix and its decomposition.

6. The seven-point algorithm for fundamental matrix estimation and the five-point algorithm for essential matrix estimation. Triangulation of points in 3D space from image correspondences.

7. The concept of algebraic and reprojection errors and Sampson approximation for reprojection error. Sampson error for fundamental matrix estimation.

8. Local optimization of Sampson error, derivation of a robust error by marginalization of a probabilistic model.

9. Robust optimization of geometric problems in 3D vision by MCMC methods.

10. Reconstruction of a multi-camera system, the bundle adjustment method, minimal and non-minimal representations for some basic geometric objects and mappings on them.

11. Introduction to stereoscopic vision, epipolar rectification of images.

12. The uniqueness, occlusion, ordering, coherence and continuity constraints in stereo and their representation in stereoscopic matching table.

13. Marroquin's greedy algorithm and the maximum-likelihood algorithm for stereoscopic matching.

14. Photometric stereo, its calibrated and uncalibrated versions.

Osnova cvičení:

1. Introduction, term project specification, instructions on how to select an object suitable for 3D reconstruction, on image capture, and on camera calibration.

2. An introductory computer programming exercise with points and lines in a plane.

3. An exercise on the geometric description of perspective camera. Robust maximum likelihood estimation of a planar line.

4. Computing sparse correspondences by WBS matcher.

5. A computer exercise with matching and estimation of two homographies in an image pair.

6. Calibration of poses of a set of cameras.

7. Midterm test.

8. Sparse point cloud reconstruction.

9. Optimization of point and camera estimates by bundle adjustment.

10. Epipolar rectification and dense stereomatching. Dense point cloud reconstruction.

11. 3D surface reconstruction.

12. Presentation and submission of resulting models.

Cíle studia:

To master conceptual and practical knowledge of the basic methods in 3D computer vision.

Studijní materiály:

R. Hartley and A. Zisserman. Multiple View Geometry. 2nd ed. Cambridge University Press 2003.

Poznámka:
Další informace:
https://cw.fel.cvut.cz/wiki/courses/tdv/start
Rozvrh na zimní semestr 2018/2019:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
Út
místnost KN:E-126
Šára R.
12:45–14:15
(přednášková par. 1)
Karlovo nám.
Trnkova posluchárna K5
místnost KN:E-220
Matoušek M.
14:30–16:00
(přednášková par. 1
paralelka 101)

Karlovo nám.
Laboratoř PC
St
Čt

Rozvrh na letní semestr 2018/2019:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 16. 6. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet4685306.html