Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2018/2019

Computer Vision Methods

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
BE4M33MPV Z,ZK 6 2p+2c
Korekvizita:
Safety in Electrical Engineering for a master´s degree (BEEZM)
Předmět nesmí být zapsán současně s:
Computer Vision Methods (AE4M33MPV)
Metody počítačového vidění (A4M33MPV)
Metody počítačového vidění (B4M33MPV)
Předmět je náhradou za:
Computer Vision Methods (AE4M33MPV)
Metody počítačového vidění (A4M33MPV)
Metody počítačového vidění (B4M33MPV)
Přednášející:
Ondřej Drbohlav, Jiří Matas (gar.), Jan Čech
Cvičící:
Ondřej Drbohlav, Jiří Matas (gar.), Jan Čech, Dmytro Mishkin, Radim Špetlík
Předmět zajišťuje:
katedra kybernetiky
Anotace:

The course covers selected computer vision problems: search for correspondences between images via interest point detection, description and matching, image stitching, detection, recognition and segmentation of objects in images and videos, image retrieval from large databases and tracking of objects in video sequences.

Požadavky:

Knowledge of calculus and linear algebra.

Osnova přednášek:

1.Introduction. Course map. Overview of covered problems and application areas.

2.Detectors of interest points and distinguished regions. Harris interest point (corner) detector, Laplace detector and its fast approximation as Difference of Gaussians, maximally stable extremal regions (MSER).Descriptions of algorithms, analysis of their robustness to geometric and photometric transformations of the image.

3.Descriptors of interest regions. The local reference frame method for geometrically invariant description. The SIFT (scale invariant feature transform) descriptor, local binary patterns (LBP).

4.Detection of geometric primitives, Hough transfrom. RANSAC (Random Sample and Consensus).

5.Segmentation I. Image as a Markov random field (MRF). Algorithms formulating segmentation as a min-cut problem in a graph.

6.Segmentation II. Level set methods.

7.Inpainting. Semi-automatic simple replacement of a content of an image region without any visible artifacts.

8.Object detection by the „scanning window“ method, the Viola-Jones approach.

9. Using local invariant description for object recognition and correspondence search.

10.Tracking I. KLT tracker, Harris and correlation.

11.Tracking II. Mean-shift, condensation.

12.Image Retrieval I. Image descriptors for large databases.

13.Image Retrieval II: Search in large databases, idexation, geometric verification

14.Reserve

Osnova cvičení:

1. - 5. Image stitching. Given a set of images with some overlap, automatically find corresponding points and estimate the geometric transformation between images. Create a single panoramic image by adjusting intensities of individual images and by stitching them into a single frame.

6. - 9. Segmentation and impainting. Implement a simple impainting method, i.e. a method allowing semi-automatic simple replacement of a content of an image region without any visible artifacts.

7. -12. Detection of a instance of a class of objects (faces, cars, etc.) using the scanning window approach (Viola-Jones type detector).

13.-14. Submission and review of reports.

Cíle studia:

The methods for image registration, retrieval and for object detection and tracking are explained. In the labs, the students implement selected methods and test performance on real-world problems.

Studijní materiály:

M. Sonka, V. Hlavac, R. Boyle. Image Processing, Analysis and Machine Vision. Thomson 2007

D. A. Forsyth, J. Ponce. Computer Vision: A Modern Approach. Prentice Hall 2003

Poznámka:

URL: http://cw.felk.cvut.cz/doku.php/courses/a4m33mpv/start

Další informace:
http://cw.fel.cvut.cz/wiki/courses/ae4m33mpv/start
Rozvrh na zimní semestr 2018/2019:
Rozvrh není připraven
Rozvrh na letní semestr 2018/2019:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
místnost KN:E-126
Matas J.
Čech J.

11:00–12:30
(přednášková par. 1)
Karlovo nám.
Trnkova posluchárna K5
Út
St
místnost KN:E-132
Špetlík R.
Mishkin D.

14:30–16:00
(přednášková par. 1
paralelka 101)

Karlovo nám.
Laboratoř PC
Čt

Předmět je součástí následujících studijních plánů:
Platnost dat k 26. 6. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet4685206.html