Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2019/2020

Algorithms and Graphs 1

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
BIE-AG1 Z,ZK 6 2P+2C
Přednášející:
Pavel Tvrdík (gar.), Jiřina Scholtzová
Cvičící:
Pavel Tvrdík (gar.), Jiřina Scholtzová
Předmět zajišťuje:
katedra teoretické informatiky
Anotace:

The course covers the basics from the efficient algorithm design, data structures, and graph theory, belonging to the core knowledge of every computing curriculum. It is interlinked with the concurrent BIE-AAG and BIE-ZDM courses in which the students gain the basic skills and knowledge needed for time and space complexity of algorithms and learn to handle practically the asymptotic mathematics.

Požadavky:

Active algorithmic skills for solving basic types of computational tasks, programming skills in some HLL (Java, C++), and knowledge of basic notions from the mathematical analysis and combinatorics are expected. Students are expected to take concurrent courses BIE-AAG and BIE-ZDM.

Osnova přednášek:

1. Motivation and Elements of Graph Theory.

2. Basic Definitions and Elements of Graph Theory I.

3. Basic Definitions and Elements of Graph Theory II.

4. Sorting Algorithms O(n^2). Binary Heaps and HeapSort.

5. Extendable Array, Amortized Complexity, Binomial Heaps.

6. Search Trees and Balance Strategies.

7. Introduction to Randomization, Hashing.

8. Recursive algorithm and the Divide-and-Conquer method.

9. Probabilistic Algorithms and Their Complexity. QuickSort.

10. Dynamic Programming.

11. Minimum Spanning Trees.

12. Shortest Paths Algorithms on Graphs.

Osnova cvičení:

1. Motivation and Elements of Graph Theory I.

2. Elements of Graph Theory II.

3. Elements of Graph Theory III. 1st ProgTest.

4. Sorting Algorithms O(n^2). Binary Heaps.

5. Extendable Array, Amortized Complexity, Binomial Heaps.

6. Search Trees and Balance Strategies. 2nd ProgTest.

7. Hashing and Hash tables.

8. Recursive Algorithms and Divide et Impera Method.

9. Probabilistic Algorithms and their Complexity. QuickSort.

10. Semestral test.

11. Dynamic Programming. 3rd ProgTest.

13. Minimum Spanning Trees, Shortest Paths.

Cíle studia:
Studijní materiály:

[1] Cormen, T. H. - Leiserson, C. E. - Rivest, R. L. - Stein, C.: Introduction to Algorithms, 3rd Edition, MIT Press, 2009, 978-0262033848,

[2] Gibbons, A.: Algorithmic Graph Theory, Cambridge University Press, 1985, 978-0521288811,

[3] Gross, J. L. - Yellen, J. - Zhang, P.: Handbook of Graph Theory, 2nd Edition (Discrete Mathematics and Its Applications), Chapman and Hall/CRC, 2013, 978-1439880180,

Poznámka:

Information about the course and courseware are available at https://courses.fit.cvut.cz/BIE-AG1/2++2

Další informace:
https://courses.fit.cvut.cz/BIE-AG1/
Rozvrh na zimní semestr 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
Út
místnost TH:A-s135
Scholtzová J.
11:00–12:30
(přednášková par. 1)
Thákurova 7 (FSv-budova A)
As135
místnost T9:346
Scholtzová J.
12:45–14:15
(přednášková par. 1
paralelka 101)

Dejvice
NBFIT učebna
St
místnost T9:302
Scholtzová J.
12:45–14:15
(přednášková par. 1
paralelka 102)

Dejvice
NBFIT učebna
Čt

Rozvrh na letní semestr 2019/2020:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 16. 9. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet3464306.html