ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2020/2021

# Mathematics for Economy

Předmět není vypsán Nerozvrhuje se
Kód Zakončení Kredity Rozsah Jazyk výuky
AE1M01MPE Z,ZK 6 4+2 anglicky
Přednášející:
Cvičící:
Předmět zajišťuje:
katedra matematiky
Anotace:

Aim of this subject is to give the basic informations about probability, mathematical statistics and Markov chains and to show their applications, mainly in insurance mathematics. At the end of the course, bases of cluster analysis will be shown.

Požadavky pro prezenční studium se nacházejí na http://math.feld.cvut.cz/helisova/01mekA1M01MPE.html a pro kombinované studium na http://math.feld.cvut.cz/helisova/01mekAD1M01MPE.html

Osnova přednášek:

1. Random event, definition of probability.

2. Conditional probability, Bayes theorem.

3. Random variable, random vector - density, distribution function, expected value, variance; examples of discrete and continuous distributions.

4. Large numbers laws, central limit theorem.

5. Random processes - fundamental definitions.

6. Markov chains with discrete time - basic properties, random walk.

7. Markov chains with discrete time - transition matrix, Chapman-Kolmogorov equation, states classification.

8. Markov chains with continuous time - Wiener process, Poisson process.

9. General insurance - basic probability distributions of the number of events and claim amounts.

10. Technical reserves - indemnity reserve, triangular schemes.

11. Markov chains in bonus systems.

12. Life insurance - premium in capital and annuity insurance.

13. Cluster analysis - basic definitions.

14. Basic methods of clustering.

Osnova cvičení:

1. Probability of random event.

2. Conditional probability, Bayes theorem.

3. Distribution of random variable.

4. Discrete random variable - distribution function, expected value, variance.

5. Continuous random variable - density, distribution function, expected value, variance.

6. Central limit theorem.

7. Random processes - states classification.

8. Markov chains with discrete time - transition matrix.

9. Markov chains with continuous time - Wiener process, Poisson process.

10. Calculation of premium and reserves in general insurance.

11. Calculation of premium in capital insurance.

12. Calculation of premium in annuity insurance.

13. Basic methods of clustering.

14. Backup

Cíle studia:
Studijní materiály:

[1] Papoulis, A.: Probability and Statistics, Prentice-Hall, 1990.

[2] Stewart W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press 2009.

[3] Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M.: Modern actuarial risk theory. Kluwer Academic Publishers, 2004.

[4] Gerber, H.U.: Life Insurance Mathematics. Springer-Verlag, New York-Berlin-Heidelberg, 1990.

[5] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley &amp; Sons, 2001.

Poznámka:

Rozsah výuky v kombinované formě studia: 28p+6s

Další informace:
http://math.feld.cvut.cz/helisova/01pstimfe.html
Pro tento předmět se rozvrh nepřipravuje
Předmět je součástí následujících studijních plánů:
Platnost dat k 16. 4. 2021
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet12798504.html