Logo ČVUT
Loading...
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2011/2012

Technical Measurements

The course is not on the list Without time-table
Code Completion Credits Range Language
E372083 KZ 3 1+2
Lecturer:
Tutor:
Synopsis:

Static and dynamic properties of measurement instruments. Organisation of measurement chain. Measurement errors, they sources and correction. Summary of principles, sensors and transducers to measurement of physical status values (temperature, position, distance, force, pressure, speed, acceleration, torque, flow, warm, humidity, level elevation, liquid and gas analysis, visual, tactile and proximity sensors). Scanning and processing measuring data. Remote measurement, signal types for data transfer, automation measurement and information systems, processing of measuring values by computer. Calibration and verification of measurement instruments.

Requirements:
Syllabus of lectures:

1.Measurement system. Static properties of sensors and transducers.

2.Uncertainty of measurement.

3.Dynamic properties of sensors and transducers. Time constant of transducer and its determination and using. Information properties of transducers.

4.Electronic evaluation circuits.

5.Temperature sensors - resistive, semiconductive, thermoelectric, pyroelectric, piezoelectric and liquid sensors.

6.Thermal power and thermal measurement. Humidity measurement.

7.Pressure sensors - inductive, resistive, capacitive and piezoresistive sensors.

8.Position measurement - absolute, incremental and impulse sensors, inductive, resistive, capacitive sensors.

9.Distance measurement - inductive, resistive, capacitive and ultrasonic sensors. Proximity sensors.

10.Force and torque measurement - inductive, resistive, capacitive and piezoresistive sensors.

11.Level elevation measurement - ultrasonic, capacitive, mechanic sensors.

12.Flow measurement - electrical anemometers (resistive), mechanical (float, propeller), Prandtl?s tube.

13.Turn speed, speed and acceleration measurement - mechanical, impulse, inductive, resistive, capacitive and semicoductive sensors.

14.Industry measurement systems.

Syllabus of tutorials:

1.Introduction.

2.Static characteristic of temperature transducers

3.Optical measurement

4.Measurement of DC and AC bridges

5.Influence of type of design of temperature transducers on their dynamic properties

6.Position measurement

7.Dimension measurement

8.Thermal power measurement

9.Pressure measurement, Humidity measurement explanation

10.Force measurement

11.Liquid level elevation measurement

12.Flow measurement, Rotameter calibration,

13.Speed measurement

14.Assessment workshop

Study Objective:

Static characteristic of temperature transducers, Position measurement, Measurement of DC and AC bridges, Influence of type of design of temperature transducers on their dynamic properties, Pressure measurement, Humidity measurement explanation, Dimensional measurement, Thermal power measurement, Liquid level elevation measurement, Force measurement, Flow measurement, Rotameter calibration, click for Omega selection guide and table, Speed measurement, Assessment workshop

Study materials:

1. Sedláeek, M., Haasz, V.: Electrical Measurements and Instrumentation, CTU Publishing House, Prague, 2000, 2. Sirohi, R., S., Radha Krishna, H., C.: Mechanical Measurements. New Delhi, Wiley Eastern Ltd., 1991, Ott, Soren: Measurements of Temperatures, Radiation and Heat Transfer in Natural Gas Flames: Final report JIVE project. Roskilde, Riso nat. Lab., 1993, 4. Webster, J.,G.: i. Boca Raton, CRC Press 2000, 5. Doebelin, E., O.: Measurement System: Application and Design. New York, McGraw-Hill, 1990

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Generated on 2012-7-9
For updated information see http://bilakniha.cvut.cz/en/predmet1796106.html