Logo ČVUT
Loading...
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2011/2012

Signals and Images Processing

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
X383ZS Z,ZK 5 2+2c Czech
The course is a substitute for:
Signal and Image Processing (383ZS)
Lecturer:
Miloš Sedláček (gar.), Václav Hlaváč
Tutor:
Miloš Sedláček (gar.), Václav Hlaváč, Tomáš Svoboda
Supervisor:
Department of Measurement
Synopsis:

A more detailed information about signal part and evaluation of exam can be found on http://measure.feld.cvut.cz/groups/edu/english/XE383ZS/index.html.

The course consists of two parts, which guarantee Department of Measurement and Department of Cybernetics. Students will gain basic knowledge of digital signal processing in the first part (sampling and reconstruction of signals, DFT and FFT, digital filters and processing of stochastic signals). The second part is devoted to images as a practically important example of 2D signals. Image formation and linear and nonlinear methods of image pre-processing and compression are explained. Emphasis is laid on practical applications.

Requirements:
Syllabus of lectures:

1. Sampling theorem and signal reconstruction.

2. Fourier transform of discrete signals.

3. Fast Fourier transform and spectrum analysis.

4. Digital filters - types, properties.

5. Digital filter design.

6. Stochastic signals - amplitude distribution and correlation functions.

7. Stochastic signals - power spectral density.

8. Introduction to images. Digital image and its properties.

9. Formation of an image, geometrical and radiometrical view.

10. Geometrical, brightness and linear integral transformations.

11. Filtration of noise.

12. Edge detections.

13. Mathematical morphology.

14. Image compression.

Syllabus of tutorials:

1. Discrete Fourier Transform (computer laboratory, MATLAB).

2. Digital filters (computer laboratory, MATLAB).

3. Correlation filtration (computer laboratory, MATLAB).

4. Sampling theorem and aliasing (laboratory).

5. Measurement of the power spectral density of noise (laboratory).

6. Suppression of periodic disturbance using digital filters (laboratory).

7. Using cross - correlation function for measurement of velocity (model of a conveyor-belt).

8. Task 1 - formation of image, radiometry, geometrical transformations.

9. Task 1 - completion.

10. Task 2 - noise filtration and edge detection.

11. Task 2 - completion.

12. Task 3 - mathematical morphology.

13. Task 3 - completion.

14. Task 4 - image compression.

Study Objective:
Study materials:

1. V.d.Enden, A., Verhoeckx, A.M.: Discrete-time Signal Processing. Prentice Hall, 1989

2. Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis. J. Wiley, 1980

3. Gonzales, R.C., Woods, R.E.: Digital Image Processing. Addison - Wesley, 1992

4. Šonka, M., Hlaváč, V., Boyle, R.D.: Image processing, analysis and

machine vision. 3. vydání, Thomson Learning, Toronto, Canada, 2007

5. Svoboda, T., Kybic, J., Hlaváč, V.: Image processing, analysis and

machine vision. The MATLAB Companion, Thomson Learning, Toronto, Canada,

2007

Note:
Time-table for winter semester 2011/2012:
Time-table is not available yet
Time-table for summer semester 2011/2012:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
roomT2:A4-203a
Sedláček M.
Hlaváč V.

09:15–10:45
(lecture parallel1)
Dejvice
Učebna
Fri
room
Svoboda T.
Petříček T.

12:45–14:15
(lecture parallel1
parallel nr.101)

roomT2:A3-412
Sedláček M.
12:45–14:15
(lecture parallel1
parallel nr.101)

Dejvice
Laborator
Thu
Fri
The course is a part of the following study plans:
Generated on 2012-7-9
For updated information see http://bilakniha.cvut.cz/en/predmet11538904.html